
Ab initio angle-resolved photoemission in multiple-scattering formulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 8587

(http://iopscience.iop.org/0953-8984/13/38/305)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 14:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 8587–8606 PII: S0953-8984(01)24868-1

Ab initio angle-resolved photoemission in
multiple-scattering formulation
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Abstract
The theory of ab initio semi-relativistic angle-resolved photoemission calc-
ulations is formulated within the real-space multiple-scattering theory and the
single-particle approximation. It has the flexibility and simplicity required
for studying systems with layered structures and more general complex
geometries. For layered structures the layer-resolved potentials are obtained
self-consistently using the Korringa–Kohn–Rostoker (KKR) method. The
advantage of the present approach is that the self-consistent potential and
the photocurrent are treated on the same footing and calculated within the
same formalism. The approach is illustrated through a study of the angle-
resolved photoemission for real-space, layered systems with two-dimensional
periodicity, with specific application to Cu.

1. Introduction

Angle-resolved photoemission spectroscopy (ARPES) experiments are among the most
powerful tools for studying the electronic structure of solids, and recent improvements in
their technical realization and flexibility have led to new challenging applications, such as
in the study of the superconducting gap in high-Tc materials [1, 2]. In particular, a lot of
progress has been made in the study of magnetic transition metals and their compounds [3,4],
rare earths [5, 6], actinides, semiconductors, and high-temperature superconductors [1, 2].
Photoemission spectroscopy has been successfully applied to study both ordered and disordered
solids and their surfaces, thin films, multilayers, and even monatomic wires [4]. However, the
interpretation of measured spectra is a complex task, since they contain information on both
the initial and final states of the emitted electron. Therefore, ARPES only reaches its full
potential when combined with theoretical interpretations of the experiments, which can then
provide information about the states involved, and how they contribute to the observed spectra.

Most state-of-the-art electronic structure calculations are based on density functional
theory (DFT) [7–9]. Although it is a well known fact that the resulting Kohn–Sham (KS)
energies and orbitals do not describe real excitations of the many-body system, they often
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provide surprisingly good approximations to them. But even in strongly correlated systems,
where this is not the case, and both the width and the positions of the bands are not well
reproduced, the photocurrent, calculated from these KS states, might help experimentalists
to identify measured structures, using the symmetries of the bands and their global features.
For a proper and quantitative treatment of photoemission, especially in strongly correlated
systems, one would, of course, have to perform calculations based on the full one-particle
Green’s function, such as that calculated within the GW approximation [10], rather than the
KS Green’s functions. This, however, is not the purpose of this communication. Here we want
to propose and demonstrate a fast and flexible method for calculating the photocurrent, which
should allow for quick calculations even for larger systems, and should help experimentalists,
when it is used in combination with electronic structure calculation and the calculation of
spectral functions, to identify the observed bands.

Many theories of ARPES [11, 12] have been implemented and give good results, but
most of them are too complicated and restricted to special symmetries of the system. In
this paper we describe an ab initio computational approach to ARPES, based on multiple-
scattering theory within the independent-particle approximation. The main advantage of the
present approach is a unified treatment of the electronic structure and the photocurrent, using
the Green’s function method developed by Györffy and Stott [13]. Following the concept of
the real-space photoemission formalism, the Green’s functions in the photocurrent formula
can be expressed through the scattering matrix, τ , in the real-space representation. The real-
space multiple-scattering theory offers a fertile field for investigations of systems with arbitrary
arrangement of atoms. By making the appropriate Fourier transformation, the formalism can
easily be specialized to more symmetric systems, such as surfaces or multilayers.

In the present approach the self-consistent potentials for the photocurrent calculations
have been obtained using the same formalism as for the photocurrent. We have implemented
the KKR method [14,15] in both the traditional (unscreened) and the screened representations
of the method [16–21].

The remainder of the paper is organized as follows. In section 2 the formalism is outlined
and the multiple-scattering representation of the photocurrent is derived. In section 3 we show
the spectra (for normal emission and off-normal emission) for the low-index surfaces of Cu and
show how the spectra can be interpreted using the spectral functions of the system. Finally,
in section 4 some calculations are presented that enable us to discuss the size convergence
of the method and to point out further approximations, which can be used to speed up the
calculations. Also the role of the self-energies in the spectra is discussed.

2. Formalism

In this section we briefly summarize the formalism of the angle-resolved photoemission within
the independent-particle approximation and derive the expression for the photocurrent in the
τ -matrix representation [22, 23]. A preliminary account of this formalism has been given in
reference [24].

In the photoemission process an electron absorbs a photon with the energy h̄ω and is
excited into a formally unoccupied state. If its energy is high enough to overcome the surface
barrier, the electron can escape into the vacuum and eventually reach the detector. On its
way through the solid the electron undergoes scattering processes with the lattice, the other
electrons, and the phonons. The former will be treated by the multiple-scattering theory, while
the latter processes are many-particle processes, which are accounted for by the self-energy.
The whole process can be described by non-equilibrium many-particle perturbation theory, as
presented by Caroli et al [25]. Here we will use the lowest order only, in which the photocurrent
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at distance R is given by

R2J λ(ε, ω) = k

4π

1

(cπ)2

∫
d3r

∫
d3r ′ �>(r; k)Ôλ(r)�Gr(r, r′; ε)

× Ôλ†(r′)�∗
>(r

′; k)�(EF − ε)�(ε + ω − Vvac) (1)

where Gr(r, r′; ε) is the retarded KS Green’s function of the system, EF is the Fermi energy,
and Vvac is the vacuum potential;

Ôλ(r) = 1

2c

[
Aλ(r)p̂ − p̂Aλ(r)

]
(2)

describes the interaction with λ-polarized light, and �>(r; k) is the so-called time-reversed
LEED state, representing electrons leaving the solid into the vacuum. It is derived from the
asymptotic form of the Green’s function and can be expressed via

�>(r,k) = eik·r +
∫

d3r ′ eik·r′
v(r′)Gr(r′, r; ε̃) (3)

where ε̃ = ε + ω and k is defined by

kx = −
√
ε̃ sin θk cosφk

ky = −
√
ε̃ sin θk sin φk (4)

kz = −
√
ε̃ cos θk.

θk and φk are the azimuthal and polar emission angles. In this section all energies are measured
with respect to the vacuum level.

Now our aim is to express all quantities involved in the photocurrent in terms of the
multiple-scattering theory [14, 15]. For simplicity we use the atomic sphere approximation
(ASA) in which the atomic spheres are slightly overlapping and space filling. The retarded
KS Green’s function of the system in the scattering-matrix representation reads as follows:

Gr(r, r′; ε) =
∑
LL′

Z̄iL(ri; ε)τ ijLL′(ε)Z
j

L′(r
′
j ; ε)−

∑
L

Z̄i(r<; ε)J iL(r>; ε)δij . (5)

The coordinates ri = r − Ri are relative to the site i. ZiL(ri; ε) and J iL(ri; ε) are respectively
the regular and irregular solutions of the Schrödinger equation with the single-site muffin-tin
potential v(r) at the energy ε. They can be decomposed into radial functions and spherical
harmonics:

ZiL(ri; ε) = Zil (ri; ε)YL(') (6)

J iL(ri; ε) = J il (ri; ε)YL('). (7)

We use the shorthand notation L for the angular momentum quantum numbers l and m and
define Z̄iL(ri; ε) as

Z̄iL(ri; ε) = Zil (ri; ε)Y ∗
L('). (8)

The scattering path operator τ ijL1L2
(ε), which is the central quantity in multiple-scattering theory,

is obtained from the matrix equation

[τ(ε)] =
[
t−1(ε)− g(ε)

]−1
(9)

where t(ε) is the single-site scattering matrix:

t il (ε) = κ−1 sin(δil (ε)) exp(iδil (ε)) (10)

describing the scattering off a single potential. The phase shifts δil (ε) are obtained by matching
the single-site wave functionsZ andJ at the atomic sphere radius to the solutions of the constant
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muffin-tin-zero potential vMTZ in the interstitial space. κ is defined as κ = √
ε − vMTZ. The

real-space structure constants g(ε), which describe the propagation between the atomic sites,
are defined by

g
ij

LL′ = −4π
√
ε(−1)mi(l

′−l) ∑
L′′

i−l
′′
C(−L,L′, L′′)h+

l′′(Ri − Rj ). (11)

Here C(−L,L′, L′′) are the Gaunt coefficients, and h+
l (r) are the Hankel functions. Further

details can be found in the literature on the multiple-scattering method, e.g. reference [26].
Alternatively the scattering matrix can be obtained using the screened KKR method [17, 18].

The LEED state can also be written in terms of the scattering matrix and the radial wave
functions:

�>(r; k) = 4π
∑
j

eik·Rj

∑
LL′

ilY ∗
L(k̂)τ

ji

LL′(ε̃)Z
i
L′(ri; ε̃). (12)

It remains to cast the perturbation operator Ôλ(r) into the appropriate form. In the spirit
of the single-particle approximation we neglect effects due to the dielectric function of the
material, and do not calculate the vector potential self-consistently. In the Coulomb gauge
(∇ · A(r) = 0) the perturbation operator, as it appears in the matrix elements, is equivalent to

Ôλ(r) = i

ω
A(r) · (∇v(r)) (13)

where the gradient operator acts only on the potential [12]. In this gauge the vector potential
is given by

Aλ(r) = Aλeiq·r (14)

and the polarization vector is

Aλx = − cos(θph) cos(φph) sin(δλ)− sin(θph) cos(δλ)

Aλy = − cos(θph) sin(φph) sin(δλ) + cos(θph) cos(δλ) (15)

Aλz = sin(θph) sin(δλ).

The photon wave vector is

qx = ω

c
sin θph cosφph

qy = ω

c
sin θph sin φph (16)

qz = ω

c
cos θph

where θph and φph are the angles of the photon incidence. Within the ASA, the perturbation
can be decomposed into the contributions from each atomic sphere:

Ôλ(r) = i

ω

∑
i

eiq·Ri χλi (ri ) (17)

with

χλi (ri ) = Aλeiq·ri · (∇v(ri )). (18)

This can be written as

χλi (ri ) = 4π
∑
L

iljl(qri)YL(q̂)Y
∗
L(r̂i )

(
Aλ · r̂i

)(
∂rv(ri)

)

= (4π)2

3
Aλ

∑
L

iljl(qri)YL(q̂)Y
∗
L(r̂i )

(∑
m

Y1,m(Â
λ)Y ∗

1,m(r̂i )

)(
∂rv(r)

)
. (19)
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Since the wavelength of the light in the range from the UV up to soft x-rays is large compared to
the atomic sphere radii, the Bessel function jl(qr)will be negligible for l > 0 and j0(qr) ≈ 1.
Hence we get

χλi (ri ) = (4π)2

3
Aλ

(∑
m

Y1,m(Â
λ)Y ∗

1,m(r̂i )

)(
∂rv(ri)

)
. (20)

We can now insert the KKR form of the Green’s function (5), the LEED state (12), and the
perturbation (20) into the expression for the photocurrent (1), and obtain its scattering-matrix
representation. This can be decomposed into two contributions, stemming from the on-site
and off-site terms in the scattering-matrix representation of the Green’s function:

R2J λ(ε, ω) = Mλ(ε, ω) + I λ(ε, ω). (21)

The off- and on-site contributions are respectively

Mλ(ε, ω) = 4πk

(cπ)2ω2
�

∑
ij

∑
LL′

∑
L2L

′
2

Ui
L2
(k, ε̃)

× F
iλ(1)
L2L

(ε, ω)eiq·Ri τ
ij

LL′(ε)e−iq·Rj F
jλ(2)
L′

2L
′ (ε, ω)U

j∗
L′

2
(k; ε̃) (22)

I λ(ε, ω) = 4πk

(cπ)2ω2
�

∑
i

∑
L2L

′
2

Ui
L2
(k, ε̃)Diλ

L2L
′
2
(ε, ω)Ui∗

L′
2
(k; ε̃) (23)

where we have introduced the definitions

Ui
L2
(k; ε̃) =

∑
L1

il1Y ∗
L1
(k̂)

∑
i ′

eik·Ri′ τ i
′i
L1L2

(ε̃) (24)

F
iλ(1)
LL′ (ε, ω) =

∫
d3ri Z

i
L(ri , ε̃)χ̃

λ
i (ri )Z̄

i
L′(ri; ε) (25)

F
iλ(2)
LL′ (ε, ω) =

∫
d3ri Z

i∗
L (ri , ε̃)χ̃

λ
i (ri )Z

i
L′(ri; ε) (26)

Diλ
L2L

′
2
(ε, ω) =

∑
L

∫
d3ri

∫
d3r ′

i Z
i
L2
(ri; ε̃)χ̃λi (ri )Z̄iL(r<; ε)J iL(r>; ε)χ̃λi (r′

i )Z
i∗
L′

2
(r′
i; ε̃).

(27)

The angular momentum integrations can be performed, leaving us with

F
iλ(1)
LL′ (ε, ω) = 4π

3
AλC(l,m; 1,m′ −m; l′,−m′)(−1)mY1,m−m′(Âλ)f

i(1)
ll′ (ε, ω)

F
iλ(2)
LL′ (ε, ω) = 4π

3
AλC(l,m; 1,m′ −m; l′,−m′)(−1)mY ∗

1,m−m′(Âλ)f
i(2)
ll′ (ε, ω)

(28)

Diλ
L2L

′
2
(ε, ω) =

(
4π

3
Aλ

)2 ∑
L

Y1m+m2(Â
λ)Y ∗

1,m+m′
2
(Âλ)

× C(l,m; 1,−(m +m2); l2,m2)(−1)m2C(l,m; 1,−(m +m′
2); l′2,m′

2)(−1)m
′
2

×
∫ Ri

0
dr r2Zil2(r, ε̃)

(
∂rv(r)

)[
J il (r, ε)d

i(1)
ll′2
(r, ε, ω) + Zil (r, ε)d

i(2)
ll′2
(r, ε, ω)

]
(29)

where the C(l,m; l1,m1; l2,m2) are the Gaunt coefficients, defined by

C(l,m; l1,m1; l2,m2) =
∫

d' Yl,m(')Yl1,m1(')Yl2,m2('). (30)
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The remaining matrix elements of the radial perturbation potential and the radial functions are
simply

f
i(1)
ll′ (ε, ω) =

∫ Ri

0
dr r2Zil (r; ε̃)

(
∂rv(r)

)
Zil′(r, ε) (31)

f
i(2)
ll′ (ε, ω) =

∫ Ri

0
dr r2Zi∗l (r; ε̃)

(
∂rv(r)

)
Zil′(r, ε) (32)

d
i(1)
ll′ (r, ε, ω) =

∫ r

0
dr ′ r ′2Zil (r

′, ε)
(
∂rv(r

′)
)
Zi∗l′ (r

′, ε̃) (33)

d
i(2)
ll′ (r, ε, ω) =

∫ Ri

r

dr ′ r ′2J il (r
′, ε)

(
∂rv(r

′)
)
Zi∗l′ (r

′, ε̃). (34)

For systems with a two-dimensional (2D) lattice symmetry, such as surfaces or multilayers,
it is advantageous to incorporate this symmetry into the formalism and perform the 2D Fourier
transformations. This allows a quasi-exact treatment of the in-plane scattering process. The
lattice-site vectors Ri can be decomposed as follows:

Ri = R‖ + Suα (35)

with u referring to the atomic position within a plane, and α labelling different planes.
Employing the 2D Fourier transformed τ -matrix:

τ
uα,vβ

L,L′ (k‖; ε) =
∑
R‖

eik‖R‖τL,L′(R‖; Suα,Svβ; ε) (36)

the three-dimensional sum over the sites can be reformulated as∑
i

eikRi τ
ij

L,L′(ε) = eik·R′
‖
∑
uα

eik·Suα

τ
uα,vβ

L,L′ (k‖; ε). (37)

This can be used to rewrite the two contributions of the photocurrent as

Mλ(ε, ω) = N
4πk

(cπ)2ω2
�

∑
uα

vβ

∑
LL′

∑
L2L

′
2

Uuα
L2
(k, ε̃)eiq·Suα

× F
uαλ(1)
L2L

(ε, ω)τ
uα,vβ

LL′ (k‖ + q‖; ε)F vβλ(2)L′
2L

′ (ε, ω)e−iq·Svβ

U
vβ∗
L′

2
(k; ε̃) (38)

I λ(ε, ω) = N
4πk

(cπ)2ω2
�

∑
uα

∑
LL′

Uuα
L (k, ε̃)D

uα,λ
LL′ (ε, ω)U

uα∗
L′ (k; ε̃) (39)

with

Uuα
L (k, ε̃) =

∑
L1

il1Y ∗
L1
(k̂)

∑
vβ

eik·Svβ

τ
vβ,uα

L1L
(k‖; ε̃). (40)

We finish this section with the formula for the layer-resolved Bloch spectral function
Auα(k‖, E), which we shall use later for analysing our photoemission results. It reads as

Auα(k‖, E) = − 1

π

∫
d3r �Guα,uα(r, r; k‖, E + i0+) (41)

and with the 2D lattice Fourier transform of the Green’s function:

Guα,vβ(r, r
′; k‖; ε) =

∑
R‖

eik‖·R‖G(r + Suα + R‖, r′ + Svβ; ε) (42)

we obtain

Auα(k‖, E) = − 1

π

∑
L

�τuα,uαL,L (k‖;E + i0+)

∫
dr r2Zuαl (r, E)

2
. (43)
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The above is just the angular momentum sum of the L-resolved spectral function:

AuαL (k‖, E) = − 1

π
�τuα,uαL,L (k‖;E + i0+)

∫
dr r2Zuαl (r, E)

2
. (44)

This spectral function is a very useful quantity, since it gives direct information about the
KKR scattering matrix, which is the quantity through which the band structure enters the
photocurrent.

3. Application

In this section we demonstrate how the method described above works in practice. As an
example, we choose the well studied copper surfaces, and, in particular, we investigate the
features of the sp band, seen on the (100) surface, and the surface state on (111). The
potentials for the respective calculations were determined self-consistently using the layer
KKR method [16, 20, 21, 27]. The potentials for the system, consisting of ten Cu layers and
three layers of empty spheres (to represent the vacuum), have been updated self-consistently.
In what follows we refer to the surface layer of this system as S and to the subsequent layers
below the surface as S−1,S−2, . . .. The empty-sphere layers are denoted by S1,S2, . . .. The
boundary conditions for both infinite half-spaces are such that the Cu bulk potential has been
used for all layers S−11 to S−∞ and the empty-sphere potential of the outermost vacuum layer,
S3, has been repeated for S4 to S∞. In the calculations these infinite half-spaces have been
treated with the decimation technique [28]. Therefore the potentials used for the (100) and
(111) surfaces differ from each other. As a demonstration of this, we show in table 1 the work
functions evaluated, which were then used in the photoemission calculations.

Table 1. Work functions= in eV obtained in this method compared with other theoretical and with
experimental values, both taken from references [?, 37].

Present work Turek Skriver Experiment

Cu(100) 5.25 5.21 5.26 4.59
Cu(111) 5.46 5.16 5.30 4.94

Figure 1 shows a series of photoemission spectra for different emission angles. What can
be clearly observed here is the d-band feature at binding energies between −2 and −4 eV,
and the sp band reaching up to the Fermi level. These results are in good agreement with the
experimental spectra and previous calculations [29].

With these spectra to hand, we want to show the relation of the photoemission spectra to
the layer-resolved spectral function, defined in equation (41), which is often used to interpret
the photoemission data. As opposed to the case for normal-emission experiments, which
correspond to k‖ = 0, for the off-normal emission, one cannot relate each spectrum to one
single, well defined k‖. The 2D wave vector k‖ (see equation (4)) depends on the kinetic
energy of the electron and hence on the binding energy. This, of course, can be taken into
account, but in the present discussion we calculate the spectral functions for k‖ corresponding
to the centre of the spectra, i.e. a binding energy of 2 eV. This leads to shifts of the peaks in
the outer regions of the plots, but since we only want to compare general features, these shifts
are of no practical importance.

Figure 2 shows the spectral functions of the surface layer and the bulk-like S−9 layer,
corresponding to the spectra shown in figure 1. Note that in the energy range above −2 eV two
clear features can be identified in the spectral functions, both stemming from the sp bands. Only
one of them can be observed in the photocurrent. This is a clear effect of the matrix elements
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−4 −3 −2 −1 0
E [eV]

30

32

34

36

38

40

42

44

46

48

T
h_

k

Figure 1. The photocurrent of Cu(100) at 21.2 eV in the
>XULK plane. The calculations were performed with
a hole linewidth of 0.05 eV and an electron linewidth
of 1.3 eV. Eleven Cu layers and ten vacuum layers were
contributing to the photocurrent, and the KKR matrix was
inverted for a system of sixteen Cu and fifteen empty-
sphere layers.

−4 −3 −2 −1 0
E [eV]

30

32

34

36

38

40

42

44

46

48

Surface layer

−4 −3 −2 −1 0
E [eV]

30

32

34

36

38

40

42

44

46

48

Bulk layer

Figure 2. Layer-resolved Bloch spectral functions of the surface and a bulk-like layer. The spectral
functions correspond to the emission angles of 30◦ to 48◦.

and the high-energy states, which do not allow excitations from the states corresponding to the
second feature in the spectral function. Predicting photoemission spectra on the basis of the
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spectral functions alone is therefore not possible. Since it is well known that KS bands might
occur at wrong energies, it is not always obvious how to relate the features seen in the spectral
function to those observed in the photoemission data. Having calculated the photocurrent, one
can relate the peaks in the experimental curve to the calculated ones, and can then use the
spectral functions to analyse these features. Here we just want to point out that the small peaks
near the Fermi level at the emission angles 34◦ to 40◦ can be related to the surface effects.
These peaks can be found in the surface layer spectral function, but they are not present in the
bulk-like spectral function.

Figure 3 shows the spectral functions corresponding to the 38◦ spectrum for the top ten
layers. This shows that the redistribution of spectral weight is confined to 4–5 layers below
the surface. From there on the system behaves basically like the bulk. The extent of 4–5
layers agrees well with the finding that beyond the order of five layers one basically recovers
bulk behaviour. The observed differences between the layers deep below the surface can be
easily explained as follows: in the bulk the Bloch states describe travelling waves, which give
rise to a lattice-periodic spectral function. On introducing a surface, these travelling Bloch
waves are reflected at the surface, leading to standing waves, and thus to energy-dependent
oscillations in space. The latter can be beautifully observed in the energy range between −2
and −3 eV.

−4 −3 −2 −1 0
E [eV]

S−9

S−8

S−7

S−6

S−5

S−4

S−3

S−2

S−1

S

Figure 3. Layer-resolved spectral functions corresponding to an emission angle of 38◦ for the
surface layer and the first nine subsurface layers.

As another example of the interplay between photoemission calculations and the layer-
resolved spectral function, we study the surface state on the (111) surface of copper. The
experimental [30] and calculated results for the total photocurrent at 21.2 eV photon energy
are shown in figures 4 and 5. The surface state is clearly observed at −0.9 eV in the calculations.
Since it is only visible with p-polarized light, one can already conclude that the state has ?3

symmetry [31]. It is possible to identify the surface state by investigating the layer-resolved
spectral function for k‖ = 0, which corresponds to normal emission.
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−4 −3 −2 −1 0
E [eV]

Figure 4. The experimental photocurrent of Cu(111) at 21.2 eV normal emission.

−4 −3 −2 −1 0
E [eV]

total
s−polarized
p−polarized

Figure 5. Polarization-resolved photocurrents of Cu(111) at 21.2 eV normal emission.

In figure 6 it can be seen that in the layer-resolved spectral function a peak at −0.9 eV
only appears for the layers near the surface, and that it decays quickly when going into the
sample. Similarly, it can also be observed that the small peak at about −3 eV originates
from a surface state. To gain further insight, one can use the angular-momentum-decomposed
spectral function.

In figure 7 we display the angular momentum decomposition of the spectral function
at the surface layer. Note that the surface state at −0.9 eV has mainly p character, while
the state at −3 eV is derived from a d state. These symmetries are, due to the selection
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Figure 6. Photocurrents of Cu(111) compared with the layer-resolved Bloch spectral function.
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Figure 7. The angular momentum decomposition of the spectral function of the (111) surface
layer.
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Figure 8. Layer calculations for the (100) surface at 21.2 eV photon energy performed with different
imaginary parts of the electron and hole energies, and the single-scatterer approximation. The top
row ((a), (b), (c)) shows results for a hole broadening of 0.05 eV, for the bottom row ((d), (e), (f ))
0.13 eV. From left to right the electron broadening is 1.3 eV ((a), (d)) and 4 eV ((b), (e)). The right
column ((c), (f )) shows the single-scatterer approximation.

rules, also reflected in the polarization dependence of the photocurrent. The p-like state is
of ?3 symmetry and shows up only in p-polarized light, while the d-like state is seen in the
s-polarization spectrum.
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Figure 8. (Continued)

4. Numerical aspects

Using the KS Green’s functions for the calculation of the photocurrent, one neglects self-energy
effects. The real part of the self-energy gives rise to a shift of the excitation energies. If the
aim is to obtain just a qualitative picture of a photoemission spectrum, this real part can in
many cases be neglected. The imaginary part leads to a finite lifetime of the excitations and
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thus determines the linewidth and also the intensity of the observed peaks. As the initial- or
final-state energies move further away from the Fermi level, these lifetime effects become more
and more important, and cannot be neglected any longer. In this work we are not presenting
a first-principles calculation for these lifetimes (for that, one has to use methods such as the
GW method [10]), but we simulate them by solving the KKR (Dyson) equation for complex
energies, whose imaginary part introduces a finite lifetime. This concept is similar to that
of including an optical (imaginary) potential [32], but has the advantage that the numerical
difficulties of evaluating the structure constants at real energies are circumvented.

In the following we compare our calculations with different imaginary energies for both
holes and electrons. While the imaginary part of the hole energy leads to a plain broadening of
the peaks, the effect of the imaginary part of the electron energy is more indirect. It broadens
the spectral function of the final state, redistributing the spectral weight, and hence allowing
electron excitations into different final states. In figure 8 one can see that whole features
are disappearing for larger imaginary parts. This demonstrates vividly the necessity for the
inclusion in the calculation of photocurrents of ab initio determined self-energies, especially for
the high-energy electrons. In the calculations with the optical potentials or complex energies,
the choice of the imaginary parts should be made according to the self-energy of the system.
Also shown in this figure are the calculations performed with the single-scatterer approximation
for the high-energy state. In the single-scatterer approximation the τ -matrix is replaced by the
single-site t-matrix, i.e. only the on-site scattering is taken into account [33]. The replacement
of the full scattering matrix by a diagonal matrix leads to an enormous speed-up of the code.
It can be seen that the results obtained with the single-scatterer approximation and with a
final-state broadening of about 4 eV are in very good agreement. The physical reason for this
is that the imaginary energy of 4 eV results in such a short mean free path that the electrons
are practically not propagating coherently from one site to the next, and therefore only the on-
site processes are important. Since the self-energy of electrons is increasing with increasing
distance from the Fermi level, the optical potential used for the highly excited states, i.e. large
photon energies, is expected to be large enough to allow for the use of the single-scatterer
approximation. In addition, due to the finite lifetime, the ‘quasi-particles’ do not propagate as
non-interacting particles; their propagation is limited to a finite range. This gives a justification
for calculating the photocurrent in a finite cluster, sufficient in size to encapsulate this mean
free path of the quasi-particles, in the real-space version, or a finite slab in the layer code.
Localized states, such as d states, are expected to be well described by a finite cluster. In
the following we discuss calculations in real space for different system sizes and imaginary
energies, and compare them with the layer method results.

This comparison is shown in figure 9. Here several points can be made. First, the sp bands
seen in the layer calculation cannot be reproduced with the real-space calculations. Second,
the basic features of the d bands can already be reproduced with the 55-atom cluster. The
87-atom cluster shows an improvement in both the d bandwidth and the smoothness of the
features, but is still not sufficient to allow one to resolve all details of the spectra. Finally,
although in the real-space calculations the imaginary part of 1.4 eV has been used, the results
show a closer resemblance to those from the layer calculations, shown in figure 8, with a much
larger imaginary part of the electron energies, or even the single-scatterer approximation. By
comparing the linewidths seen in figures 8 and 9, one finds also that the hole linewidth in the
real-space calculations is larger than that in the layer calculation, although these calculations
have been performed with the same imaginary energy for the holes. Furthermore, the effect of
the hole broadening in the cluster calculations is much weaker than in the layer calculations.
The missing sp bands can be understood as follows: the strongly dispersive sp bands correspond
to states which are much more extended than the d states. The cluster size used in the real-space
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Figure 9. Comparison of real-space and layer calculations. The real-space calculations were
performed with 55-atom ((a), (c)) and 87-atom ((b), (d)) clusters for the photocurrent. For the
calculation of the τ -matrix two more shells were included, i.e. the clusters contained of 87 and 141
atoms respectively. The calculations (a), (b) used an imaginary part of 0.05 eV for the lower state,
while for (c), (d) 0.13 eV was used. The real-space calculations were performed with a 1.3 eV
broadening for the high state.

calculations is too small to allow for the propagation of sp-like electrons. It should be kept in
mind that in the layer method, even if the system is represented by a finite slab, the infinite
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extent in the xy-plane is treated quasi-exactly (Kambe’s method [34–36] of calculating 2D
lattice sums is used). The d states, on the other hand, which have a smaller bandwidth and
hence are more localized, are more readily accessible using real-space cluster calculations.
From the last point one can conclude that in the present calculations the broadening of the
electrons and holes is dominated by the mean free path, introduced by the cluster size and not
by the mean free path due to the imaginary energies. A comparison to the layer calculations
with large imaginary energies of the electrons shows that the mean free path introduced by the
finite cluster corresponds to a broadening of the order of several eV.

The influence of the system size on the layer calculations can be seen in figure 10. The
two calculations use the same potentials and the same broadenings, but differ as regards the
slab size used in the photoemission calculation. For the results shown in the left-hand panel a
slab of 16 Cu and 15 empty sphere layers was used in the calculation of the scattering matrix,
while 11 Cu and 10 empty-sphere layers were taken into account for the photocurrent. This
system size was also used for all other layer calculations in this paper. The right-hand panel
shows the results of the calculations with 31 Cu and 30 empty-sphere layers for the τ -matrix,
and 26 and 25 layers for the photocurrent. It is clear that the sp features are more pronounced
in the larger slab. This was to be expected on the grounds of the above explanation of the
missing sp features in the cluster calculation.
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Figure 10. Comparison of layer calculations with different slab sizes. The number of layers for
the photocurrent (the τ -matrix) are, in (a): 11 (16) Cu layers and 10 (15) empty-sphere layers; and
in (b): 26 (31) Cu layers and 25 (30) empty-sphere layers.

In many previous photoemission calculations the surfaces were treated by using the bulk
potentials with a model description of the vacuum barrier potential. In the present method, the
potentials can be taken directly from the self-consistent calculation for the specific geometry,
i.e. the potentials of the surface layers and the vacuum layers on top of the surface are calculated
on the same footing as the bulk potentials, which serve as the correct boundary conditions. In
figure 11 we compare results obtained with the self-consistently calculated potentials to the
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Figure 11. Comparison of relaxed and unrelaxed potentials (see the text for details).

results calculated with the bulk potentials only. Here for all Cu layers the bulk potential was
used, while for all vacuum layers (S1 to S∞) the ‘vacuum–bulk’ potential (S3) was used. As
should have been expected, we find good agreement for the bulk-like features, while the surface
states are strongly affected by the slight changes of the potentials and the resulting redistribution
of charge. These results are in perfect agreement with those given by Turek et al [37]. Since
the position of the surface state is so sensitive to the details of the surface potential, the shift
of the calculated surface state with respect to the experimentally observed surface state can be
explained by the deviation of the calculated work function from the experimental value, given
in table 1.

For the calculation of the scattering matrices, different methods can be applied. In figure 12
we compare three different methods, applied to the low-energy states. Firstly, the structure
constants can be calculated for a real-space cluster. The screening transformation, introduced
by Andersen [38, 39], can be applied to make the structure constants short ranged. Therefore,
the reference system is replaced by a system with a repulsive potential [17], which forbids
free-electron propagation below the height of the repulsive potential, and hence leads to short-
ranged structure constants. In the case of the 2D lattice periodicity, the Fourier transform of the
screened structure constants can easily be evaluated [27]. Secondly, the structure constants can
be evaluated by the Kambe method [34–36], making use of the 2D lattice symmetry. Finally,
the two methods can be combined, giving rise to the screened Kambe structure constants [40].
In all these cases, however, the same layer geometry was used. The differences between the
curves are very small and demonstrate that all methods have about the same accuracy, proving
that all the different structure constants have been converged.

5. Conclusions

We have presented an implementation of the real-space scattering-matrix method for
calculating photoemission spectra for arbitrary geometries, such as surfaces and impurities.
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Figure 12. Comparison of different methods for calculating the low-energy scattering matrix.

The main feature of this approach is its flexibility. The formalism, developed in real space, is
easily adapted to 2D lattice symmetry. Several methods for calculating the required scattering
matrices are available and can be used. For the initial states, the screened KKR implementation
can be employed, which together with the decimation technique eliminates finite-size effects
for the hole states and allows for fast computations of the scattering matrix. Another strong
point of this method is that the self-consistent calculation and the calculations of the spectral
functions and the photocurrent are based on the same method and are performed with the
same code.

We demonstrated the power of the method for interpreting experimental spectra, by
investigating the spectral functions calculated within the same method. This combination
provides insight into the nature of the photoemission peaks. It was shown that a comparison
of the experimental results with calculations of the Bloch spectral function alone might not
always be sufficient. This combination of spectral functions and photocurrent calculations was
applied to the photoemission spectra of the copper (100) and (111) surfaces.

Comparisons of real-space calculations with the layer calculations showed that the real-
space method, which provides much more flexibility than the layer method, yields good results
for localized states, such as d states, which are well described by a finite-cluster calculation.
This was illustrated by calculations performed with the layer method, where the mean free
path of the electrons and holes was limited by the introduction of an imaginary part in the
energies. With increasing imaginary energies the results showed closer agreement with
the real-space results. Further improvement on the real-space method can be achieved by
implementing the screening transformation also in the real-space code. This would on the one
hand make the structure constants short ranged, and hence improve the cluster approximation,
and would also, due to the resulting sparsity of the scattering matrix, allow bigger clusters to
be investigated.
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